Frogans Technology OP3FT
IFAP 1.0 March 5, 2014

Adopted

International Frogans Address Pattern - 1.0

Abstract

This document sets forth the pattern applicable to Frogans addresses.
A Frogans address is a string of characters used to identify a
Frogans site published on a computer network, such as the Internet or
an intranet. A Frogans address may contain international characters
and may be written either from left to right or from right to left,
depending on the writing system.

Status

This document is an official technical specification of the Frogans
technology.

This technical specification was adopted by the OP3FT on March 5,
2014.

Comments on this document are welcome and may be made on the Frogans
technology mailing lists, accessible at the following permanent URL:
https://lists.frogans.org/.

Location

This document is accessible at the following permanent URL:
https://www.frogans.org/en/resources/ifap/access.html.

Copyright Statement
This document must be used in compliance with the Frogans Technology
User Policy, accessible at the following permanent URL:

https://www.frogans.org/en/resources/ftup/access.html.

Copyright (C) 2014 OP3FT. All rights reserved.

OP3FT Frogans Technology [Page 1]

IFAP 1.0 Adopted

Table of Contents

kOCXJ\]O‘\U‘I

B R e

ww ww

DO DD

9

9.

Introduction

.1. Background

.2. Purpose .
.3. Intended audlence
.4. Stability and security
.5. Compliance
Terminology .
Frogans address strlngs
.1. String character set
.2. String formation

.3. Eligible characters
.4. Directionality

Structure of a Frogans address

.1. Asterisk character

.2. Network name
.3. Site name
.4. Connector characters

Generating the reference form of a Frogans address
Evaluating the length of a Frogans address

Checking whether two Frogans addresses are 1dentlcal
Usage of ASCII-encoded Frogans addresses

References Coe e

1. Normative references

2. Informative references

Appendix A. IFAP lookup tables
Appendix B. Pseudocode syntax

Appendix C. Assistance in 1mplementlng the specrflcatlon
C.

OP3FT

ONONONONe!

1. String character set
String formation
Eligible characters
Directionality
Structure

Reference form

o U1 W N

Frogans Technology

March 2014

o oY U W W

10
12
14
15
18
18
18
19
19
21
23
24
25
28
28
28
30
34
38
38
39
54
55
61
67

[Page 2]

IFAP 1.0 Adopted March 2014

1.

1.

1.

Introduction
Background

Started in 1999, the Frogans project aims to introduce a new software
layer on the Internet alongside other existing layers such as E-mail
or the Web. The goal of this new software layer, called the Frogans
layer, 1s to enable the publishing of Frogans sites.

The Frogans technology developed for the Frogans project is the
foundation of the Frogans layer. It includes an addressing system
allowing users to access each Frogans site via a unique Internet
address, called a Frogans address.

A Frogans address is an identifier. It is made up of a string of
characters.

At the time the original Frogans address pattern was designed, the
goals were to define a pattern with the following characteristics:

* It had to be short and simple.
* It could not contain any technical information.

* It had to clearly stand out in various contexts where Frogans
addresses could appear (such as in a printed document, on a
business card, or when displayed as a link on a Web page or in an
E-mail message).

* It had to be original so that users could easily distinguish
Frogans addresses from other Internet addresses (such as those
pointing to Web sites or to content published on other software
layers which may be introduced on the Internet in the future).

URIs [RFC3986] and domain names [RFC1034] were not chosen as a basis
for Frogans addresses as they could not directly achieve these goals
without modifying their scheme or syntax.

The original pattern chosen to achieve these goals is described in
the Frogans Network System Language specification released in 2004

[FNSL].

The original Frogans address pattern defines a name space with the
following features:

* The name space uses two main levels.

OP3FT Frogans Technology [Page 3]

IFAP 1.0 Adopted March 2014

* The two levels are separated by a distinctive sign: the asterisk
character.

* The first level designates the Frogans network, i.e. the group
that the Frogans site belongs to.

* The second level reflects the content of that Frogans site.

The original Frogans address pattern was intended to support the
ASCII character set [ASCII] only. Frogans addresses were read from
left to right. The first level in the Frogans Address always
appeared on the left.

1.2. Purpose

The purpose of this document is to set forth a new pattern applicable
to Frogans addresses.

Since the creation of the original Frogans address pattern, the use
of the Internet has continued to expand worldwide. Thanks to the
widespread adoption of technologies such as the Unicode Standard, the
use of international characters has been generalized. They are now
used extensively both for the content exchanged over the Internet
(such as E-mail messages and Web pages) and for domain names through
the development of Internationalized Domain Names (IDNs).

In order to meet the needs of users worldwide, the original Frogans
address pattern must be extended to support international characters

so it is no longer limited to the ASCII character set [ASCII]. This
includes the support of both left-to-right and right-to-left writing
systems.

Extensive work has already been carried out on international
identifiers, including Internationalized Domain Names (IDNs), by
organizations such as the Unicode Consortium, the World Wide Web
Consortium (W3C), the IETF, ICANN, and various domain name registry
operators. The work reflects the many lessons learned about security
issues in systems supporting multiple languages, and how to mitigate
them. The new Frogans address pattern obviously needs to build upon
these achievements.

The new Frogans address pattern must retain the characteristics of
the original Frogans address pattern as well as the features of its
name space.

The new Frogans address pattern must also remain backward compatible

with the original pattern, with two exceptions. First, the lengths
of the two main levels (referred to as the network name and the site

OP3FT Frogans Technology [Page 4]

IFAP 1.0 Adopted March 2014

name in this document) have been harmonized to share the same minimum
and maximum values. Second, in order to avoid confusion with domain
names on the Internet, the full stop character (.) has been
eliminated from the second level.

It is important to note that the addressing system used for Frogans
sites is not intended to replace domain names nor the Domain Name
System (DNS). In fact, it operates on top of the DNS wvia a specific
generic top-level domain (the .frogans gTLD), and on top of other
core Internet protocols and standards. The functioning of this
addressing system is described in the Frogans Network System Language
specification [FNSL].

1.3. Intended audience

This document is intended for those involved in the Frogans address
registration process, such as Frogans address holders, FCR account
administrators, and the Operator of the Frogans Core Registry (FCR).

This document is also intended for developers wishing to implement
software using Frogans addresses, and in general for anyone
interested in the addressing system used for Frogans sites.

To comprehend the choices made in this specification, it is necessary
to understand the context in which these choices are made. This is
not an easy task, since the multiple standards and specifications
underlying the Frogans address pattern require time and effort to
assimilate and use correctly.

Therefore, in order to make this specification accessible to the
widest possible audience, it was decided to provide, when required,
relevant background information before describing the choices made.
As a result, this specification often alternates background
information and rules applicable to Frogans addresses. The
background information may include a detailed reference to the
underlying standard or specification.

In addition, the appendices provide assistance in implementing
certain parts of this specification. They contain lookup tables with
pre-processed lists of code points (Appendix A), pseudocode syntax
(Appendix B), and a series of verification and generation processes
(Appendix C). The goal is to avoid the need for developers to access
and analyze the data and the algorithms defined in the multiple
standards and specifications involved in the Frogans address pattern.

OP3FT Frogans Technology [Page 5]

IFAP 1.0 Adopted March 2014

1.4. Stability and security

An important difficulty must be overcome when specifying
international identifiers.

When a security issue is discovered in one or more specifications
concerning international identifiers, the specifications in question
should be amended to mitigate the problem. However, widely
distributed and installed implementations should remain compatible,
as they would be difficult to update in a reasonable delay.

To solve these contradictory requirements, the OP3FT Bylaws [BYLAWS]
call for the creation of a separate technical specification dealing
with security issues, notably concerning support for multiple
languages. This specification is called Frogans Address Composition
Rules (FACR).

Thus two specifications apply to Frogans addresses: IFAP (this
document) and FACR. They play complementary roles:

* IFAP defines Frogans addresses from a technical standpoint. FACR
focuses on security rules.

* IFAP is designed to be language-independent. FACR covers
language-related issues.

* IFAP provides a stable base that is intended for the long term.
FACR will be updated as needed to deal with new security issues.

* IFAP is to be implemented globally in all software using Frogans
addresses. FACR is to be implemented solely by the FCR Operator.

The rules in FACR are enforced by the FCR Operator at the time a
Frogans address is added to the FCR. The rules in FACR are applied
to Frogans addresses that are already compliant with the IFAP
specification.

This two-part model for specifying Frogans addresses combines the
stability required for a widely distributed and installed technology
with the flexibility and reactiveness demanded to solve security
issues that may arise.

1.5. Compliance
The rules applicable to Frogans addresses in this specification are

defined in succession. The definition of each rule assumes
compliance with all preceding rules.

OP3FT Frogans Technology [Page 6]

IFAP 1.0 Adopted March 2014

A conforming implementation of this specification is an
implementation which is compliant with all descriptions appearing in
this document, except for:

* descriptions in paragraphs that do not directly concern the
Frogans technology, but provide background information intended to
help understand the context and the reasons for choices made

* descriptions found in sections that are indicated as not
normative, such as the appendices which provide assistance in
implementing certain parts of this specification

* descriptions in the form of examples that illustrate certain
aspects of the specification

Hence, unlike in specifications elaborated by several other
organizations, requirement levels in this specification are not
indicated using key words such as "must", "must not", "should", and
"should not" defined in RFC 2119 [RFC2119]. This applies to all
specifications elaborated by the OP3FT.

Normative and informative references appear between square brackets

[] in this document. Their details are included in the References
section.

OP3FT Frogans Technology [Page 7]

IFAP 1.0 Adopted March 2014

2. Terminology
This section defines key terms used in this specification.

OP3FT

A non-profit organization whose purpose is to hold, promote,
protect, and ensure the progress of the Frogans technology in
the form of an open standard for the Internet, available to all,
free of charge.

Frogans technology

A secure technology used to implement a new software layer on
the Internet, alongside other existing software layers such as
E-mail or the Web. The Frogans technology makes it possible to
publish Frogans sites.

Frogans site

A set of Frogans pages, called "slides", hyperlinked to each
other, available online on the Internet or in an intranet, at a
Frogans address. A Frogans site can be published by any
individual or organization, from anywhere in the world, in any
language.

Frogans address

A string of characters serving as the identifier of a Frogans
site. Frogans addresses include two parts, separated by the
asterisk character: the network name and the site name. Frogans
addresses may contain international characters and may include
uppercase, lowercase, and accented characters. Frogans
addresses may be written from left to right or from right to
left. For example, in the left-to-right writing direction, the
pattern of a Frogans address is "network-name*site-name".

Separator character

The asterisk character. It is used to separate the network name
and the site name in a Frogans address.

Network name

The string of characters in a Frogans address that precedes the
separator character when writing the Frogans address.

Site name

OP3FT Frogans Technology [Page 8]

IFAP 1.0 Adopted March 2014
The string of characters in a Frogans address that follows the
separator character when writing the Frogans address.

Connector character

A character that can be used to connect different words included
in a network name or a site name.

Reference form
Form of a network name, a site name, or a Frogans address
generated to evaluate its length and to check whether two
network names, site names, or Frogans addresses are identical.
This form is not intended for display to end users.
Preferred form
Form of a network name, a site name, or a Frogans address as
registered in the Frogans Core Registry by its holder. Frogans
Player uses this form to display Frogans addresses to end users.
Frogans network
A group of Frogans addresses that have the same network name.

Frogans Core Registry, FCR

The database which contains all registered Frogans addresses and
Frogans networks. The database belongs to the OP3FT.

FCR Operator
The organization responsible for the technical and commercial
operation of the FCR, under a delegation agreement with the
OP3FT.

Frogans Player
Free-of-charge software used to browse Frogans sites. Frogans

Player is to be made available on a wide range of fixed and
mobile devices.

OP3FT Frogans Technology [Page 9]

IFAP 1.0 Adopted March 2014

3. Frogans address strings
3.1. String character set
A Frogans address is made up of a string of characters.

In technical terms, a character string can be seen as a series of
numbers, where each number corresponds to a specific character. This
correspondence between numbers and characters is defined in a table
called a "character set".

Historically, since the original ASCII character set [ASCII] which
was designed for the English language, numerous other character sets
have been defined over the years in various parts of the world in
order to support other languages. For example: GBK for simplified
Chinese, Shift-JIS for Japanese, the IS0-8859-xx series for other
languages, etc.

To simplify the interoperability of computer systems worldwide, a
character set was defined to include all the characters of all the
world's languages. This universal character set is called Unicode
[Unicode]. 1In the Unicode character set, the numbers corresponding
to characters are called "code points". Code points are grouped into
collections called "Unicode scripts", each one representing a writing
system. A Unicode script can be used in the context of one or more
languages.

The standard way of representing a Unicode code point is "U+code"
where "code" is a series of four to six uppercase hexadecimal digits
representing the numerical value of the code point. For example,
U+96CD represents the code point of the character corresponding to
"harmony, union; harmonious" in the Han Unicode script, which is used
in the context of the Chinese, Japanese, and Korean languages.

A given language may make use of more than one Unicode script. For
instance, the Japanese language makes use of three Unicode scripts:
Han, Hiragana and Katakana.

Unicode provides the means to support both left-to-right and right-
to-left text, as well as bidirectional text. Right-to-left text is
used in the Arabic and Hebrew writing systems.

The code points in a Unicode string are in the order in which the
text is written.

Storage or transmission of a Unicode string is achieved by encoding

its code points into an array of bytes, using an encoding method such
as UTF-8 [UTF-8] or UTF-16 [UTF-16].

OP3FT Frogans Technology [Page 10]

IFAP 1.0 Adopted March 2014

In light of these extensive features, the Unicode character set has
been progressively adopted in the information technology industry and
is now widely used.

The character set used to represent Frogans address strings is the
character set defined in version 6.3.0 of the Unicode Standard
[Unicode], which is the latest available version at the time this
specification is being completed.

This specification is tied to this version of the Unicode Standard,
and in that sense it is not a "living standard". A new version of
IFAP will be prepared if future corrections or enhancements to the
Unicode Standard have an impact on the use of Frogans addresses.

This would be the case, for example, if important code points were to
be added or removed, or if their properties were to be modified. 1In
any case, Frogans addresses will remain compatible with Frogans
addresses defined under future versions of IFAP.

In this document, Frogans addresses are described using code points,
irrespective of the encoding method used to store or transmit them.
Each code point is represented using the "U+code" format described
above, followed by its name in the Unicode character set. For
example, the code point "U+0046" is represented as "U+0046 LATIN
CAPITAL LETTER F".

The Unicode Standard defines fundamental classes of code points,
referred to as General Categories (see the Unicode Standard, section
4.5 General Category) and as Basic Types (see the Unicode Standard,

section 2.4 Code Points and Characters). The Basic Types are
Graphic, Format, Control, Private-Use, Surrogate, Noncharacter, and
Reserved.

Code points with the Basic Type of Control, Private-Use, Surrogate,
Noncharacter, and Reserved are not suitable for use in identifiers
since either their usage is meant to be defined outside the Unicode
Standard or they are reserved.

Code points with the Graphic Basic Type correspond to letters, marks,
numbers, punctuation, symbols, and spaces, while code points with the
Format Basic Type are invisible but affect neighboring characters, or
are line/paragraph separators.

Code points with the Basic Type of Control, Private-Use, Surrogate,
Noncharacter, and Reserved cannot be included in Frogans address

strings.

Code points with the Format Basic Type cannot be included in Frogans
address strings, except for the following code points: U+200C ZERO

OP3FT Frogans Technology [Page 11]

IFAP 1.0 Adopted March 2014

WIDTH NON-JOINER and U+200D ZERO WIDTH JOINER.

Following the rules presented in Section 3.1, a total of 109,977 code
points and 102 Unicode scripts are available for use in Frogans
address strings. Subsequent rules will reduce these totals.

For assistance in implementing a function to verify compliance
regarding the string character set, see Appendix C.1.

Several additional rules applicable to the use of code points in
Frogans addresses will be defined in subsequent sections of this
specification. Such rules are needed because the Unicode character
set was initially designed to manage general text rather than
identifiers. These rules include, for example, string formation,
eligible characters, and directionality.

Many of these additional rules are based on work by the Unicode
Consortium and the IETF concerning the use of identifiers and the
introduction of Internationalized Domain Names (IDNs) in the Domain
Name System on the Internet.

3.2. String formation

The Unicode Standard [Unicode] [UAX15] defines four normalization
forms for Unicode strings of characters (see the Unicode Standard,
section 3.11 Normalization Forms). These normalization forms are
Normalization Form D (NFD), Normalization Form C (NFC), Normalization
Form KD (NFKD), and Normalization Form KC (NFKC) .

Normalization form NFKC erases both canonical and compatibility
differences, and generally produces a composed result. It is
recognized as the most appropriate form for identifiers in the
Unicode Standard Annex #31 [UAX31].

The normalization form used for Frogans address strings is NFKC. 1In
other words, Frogans address strings are not modified when they are
normalized to NFKC.

As a result, a code point which is modified through an operation that
returns the code point normalized to NFKC cannot be included in a
Frogans address string.

The Unicode Standard defines combining characters, which are used in
sequence to combine with a preceding base character (see the Unicode
Standard, section 3.6 Combination). Combining characters include
characters such as accents, diacritics, Hebrew points, Arabic vowel
signs, and Indic matras. For example, the U+0302 COMBINING
CIRCUMFLEX ACCENT character is a combining character.

OP3FT Frogans Technology [Page 12]

IFAP 1.0 Adopted March 2014

The General Category of combining characters is M (Combining Mark) .

Frogans address strings cannot contain more than 30 successive code
points corresponding to combining characters.

The Unicode Standard defines combining classes that are used to
determine which sequences of combining characters are to be
considered canonically equivalent and which are not (see the Unicode
Standard, section 3.11 Normalization Forms). Each code point is
assigned a combining class, referred to as its

Canonical Combining Class property.

The Unicode Standard also defines a joining type that is used to
describe the cursive joining behavior of each character as it
interacts with the cursive joining behavior of adjacent characters
(see the Unicode Standard, section 8.2 Arabic). Each code point is
assigned a joining type, referred to as its Joining Type property.
The Joining Type property values are R (Right Joining), L

(Left Joining), D (Dual Joining), C (Join Causing), T (Transparent),
and U (Non Joining) .

The U+200C ZERO WIDTH NON-JOINER code point can be included in
Frogans address strings only if one of the following two conditions
is met:

* The U+200C ZERO WIDTH NON-JOINER code point is preceded in the
Frogans address string by a code point with the
Canonical Combining Class property value equal to 9 (Virama).

* The U+200C ZERO WIDTH NON-JOINER code point is included in a
sequence of code points that matches the following pattern: a code
point with the Joining Type property value equal to L or D,
followed by zero or more code points with the Joining Type
property value equal to T, followed by the U+200C ZERO WIDTH NON-
JOINER code point, followed by zero or more code points with the
Joining Type property value equal to T, followed by a code point
with the Joining Type property value equal R or D. This sequence
can be located anywhere within the Frogans address string.

The U+200D ZERO WIDTH JOINER code point can be included in Frogans
address strings only if it is preceded in the Frogans address string
by a code point with the Canonical Combining Class property value
equal to 9 (Virama) .

Following the rules presented in Section 3.2, applied in addition to
the preceding rules, a total of 105,190 code points and 102 Unicode
scripts are available for use in Frogans address strings. Thus the
rules presented in this section eliminate 4,787 code points and zero

OP3FT Frogans Technology [Page 13]

IFAP 1.0 Adopted March 2014

Unicode scripts. Subsequent rules will further reduce these totals.

For assistance in implementing a function to verify compliance
regarding string formation, see Appendix C.2.

3.3. Eligible characters

Internationalized Domain Names for Applications [IDNA2008] defines a
procedure in RFC 5892 [RFC5892] that determines code point sets
allowed in domain names by calculating the value of a property for
each code point, referred to as the Derived Property Value.

To define the eligible characters in Frogans address strings, the
procedure for calculating the Derived Property Value is adapted by
modifying the following Category Definitions (described in RFC 5892,
section 2 Category Definitions Used to Calculate Derived Property
Value), while leaving the algorithm (described in RFC 5892, section 3
Calculation of the Derived Property) unchanged:

* The Category Definition Exceptions (F) is modified by adding
U+002A to the set of code points and by assigning the PVALID
Derived Property Value to that code point. This modification
reintroduces the U+002A ASTERISK character (the distinctive sign
of a Frogans address) which is not allowed under the IDNA
procedure.

Furthermore, in order to ensure that the eligible characters in
Frogans address strings are coherent with subsequent sections of
this IFAP specification (Section 3.4, Section 4.4, and Section 5),
an additional modification is applied to the Category Definition
Exceptions (F). The following code points are added to the set of
code points and are assigned the DISALLOWED Derived Property
Value: U+02EC, U+A67F, U+A717, U+A718, U+A719, U+A71A, U+A71B,
U+A71C, U+A71D, U+A71E, U+A71F, U+A788, U+A78D, and U+A7AA.

* The Category Definition Unstable (B) is modified so that it always
returns False. In other words, no code points are unstable under
this definition (characters that are not stable under NFKC are
eliminated through the preceding rules stated in Section 3.2 of
this IFAP specification). This modification reintroduces code
points with the General Category of Lu (Uppercase Letter), Lt
(Titlecase Letter), and L1 (Lowercase Letter).

* The Category Definition LetterDigits (A) is modified by adding the
General Category Lt (Titlecase Letter) to the set of categories.
This modification is necessary to ensure that code points with the
General Category of Lt (Titlecase Letter) are assigned the PVALID
Derived Property Value.

OP3FT Frogans Technology [Page 14]

IFAP 1.0 Adopted March 2014

Code points with the Derived Property Value of DISALLOWED or
UNASSIGNED, as calculated following the adapted procedure described
above, cannot be included in Frogans address strings.

The Unicode Technical Standard #39 [UTS39] defines a profile of
identifiers in environments where security is an issue, referred to
as General Security Profile for Identifiers (see the Unicode
Technical Standard #39, section 3.1). This profile assigns either a
Restricted or Allowed status to each character.

Code points with the Restricted status in Unicode Technical Standard
#39 cannot be included in Frogans address strings, except for the
U+002A ASTERISK character and characters belonging to the Unicode
scripts defined as Aspirational Use Scripts or Limited Use Scripts in
the Unicode Standard Annex #31.

Following the rules presented in Section 3.3, applied in addition to
the preceding rules, a total of 93,929 code points and 60 Unicode
scripts are available for use in Frogans address strings. Thus the
rules presented in this section eliminate 11,261 code points and 42
Unicode scripts.

After having applied the preceding rules in this IFAP specification,
the adapted procedure described above eliminates 4,619 code points
that are allowed under the IDNA procedure. The adapted procedure
also reintroduces 575 code points that are not allowed under the IDNA
procedure: 510 code points with the General Category of Lu

(Uppercase Letter), 27 code points with the General Category of Lt
(Titlecase Letter), 37 code points with the General Category of Ll
(Lowercase Letter), and the U+002A ASTERISK character.

For assistance in implementing a function to verify compliance
regarding eligible characters, see Appendix C.3.

3.4. Directionality

The Unicode Standard Annex #9 [UAX9] defines bidirectional character
types (see the Unicode Standard Annex #9, section 3.2 Bidirectional
Character Types) to manage text mixing both left-to-right and right-
to-left writing directions. Each code point is assigned a
bidirectional character type, referred to as its Bidi Class property.

A total of 23 Bidi Class property values are defined in the Unicode
Standard Annex #9. After having applied the preceding rules in this
IFAP specification, the code points in Frogans address strings can
only have one of nine possible Bidi Class property values. These
property values are the following, with the total number of eligible
characters for each one: L (Left-to-Right, 93,025), R (Right-to-Left,

OP3FT Frogans Technology [Page 15]

IFAP 1.0 Adopted March 2014

102), AL (Right-to-Left Arabic, 279), EN (European Number, 20), ES
(European Number Separator, 1), AN (Arabic Numbers, 10), NSM
(Nonspacing Mark, 486), BN (Boundary Neutral, 2), or ON (Other
Neutrals, 4).

These Bidi Class property values fall into three main categories:
Strong (which includes L, R, and AL), Weak (which includes EN, ES,
AN, NSM, and BN), and Neutral (ON).

The following directionality rules apply to Frogans address strings:

* The Bidi Class property value of the first code point of a Frogans

address string equals either L, R, or AL. In other words, the
first code point of a Frogans address belongs to the Strong
category.

* If the Bidi Class property value of the first code point of a
Frogans address string equals L, then no other code point in the
Frogans address string can have a Bidi Class property value equal
to R, AL, or AN. In addition, the Frogans address string ends
with a code point with Bidi Class property value L or EN, followed
by zero or more code points with Bidi Class property value NSM.

As a result, in this case the directionality of the entire Frogans
address string is left to right.

* If the Bidi Class property value of the first code point of a
Frogans address string equals R or AL, then no other code point in
the Frogans address string can have a Bidi Class property value
equal to L. In addition, the Frogans address string ends with a
code point with Bidi Class property value R, AL, EN, or AN,
followed by zero or more code points with Bidi Class property
value NSM. As a result, in this case the directionality of the
entire Frogans address string is right to left.

Consequently, the first code point of Frogans address strings cannot
have a Bidi Class property value equal to EN, regardless of whether
the directionality of the Frogans address string is right to left or
left to right.

As a result of these rules, Frogans address strings cannot mix left-
to-right and right-to-left directionality (except for code points
having the EN or AN Bidi Class property value in Frogans address
strings with right-to-left directionality); and the Bidi Class
property of the first code point in a Frogans address string
determines the directionality of the entire Frogans address string.

These directionality rules are intended to ensure that users reading
a Frogans address string on screen or in print can easily and

OP3FT Frogans Technology [Page 16]

IFAP 1.0 Adopted March 2014

unambiguously determine its directionality.

These rules are inspired by the Bidi Rule described in RFC 5893
[REC5893], which is part of Internationalized Domain Names for
Applications [IDNA2008] (see RFC 5893, section 2 The Bidi Rule).

The rules presented in Section 3.4, applied in addition to the
preceding rules, do not reduce the total number of code points and
Unicode scripts that are available for use in Frogans address
strings.

For assistance in implementing a function to verify compliance
regarding directionality, see Appendix C.4.

OP3FT Frogans Technology [Page 17]

IFAP 1.0 Adopted March 2014

4. Structure of a Frogans address

The preceding section of this specification focuses on Frogans
address strings, including the string character set, string
formation, eligible characters, and directionality. This section
describes the Frogans address structure.

The structure of Frogans addresses is the visible part of the iceberg
in the definition of Frogans addresses. This structure provides
Frogans addresses with a pattern that is easy to distinguish from
other popular Internet address patterns such as those used in E-mail
addresses or URLs.

4.1. Asterisk character

The structure of a Frogans address includes a special character that
acts as a separator. This character, called the separator character,
is the U+002A ASTERISK character (*).

A Frogans address contains one and only one separator character.

The separator character cannot be the first nor the last character of
a Frogans address.

This separator character was chosen at the beginning of the Frogans
project so as to avoid confusion with other separators such as the
U+003A COLON character (:), the U+002F SOLIDUS character (/), and the
U+002E FULL STOP character (.) that are commonly used in other
computing environments.

The U+002A ASTERISK character in a Frogans address plays the same
role as the U+0040 COMMERCIAL AT character (@) in an E-mail address,
which separates the user from the host. The U+002A ASTERISK
character separates the two parts of a Frogans address: the network
name and the site name.

4.2. Network name

The network name of a Frogans address is used to represent the name
of a Frogans network.

In a Frogans address, the network name is the string of characters
that precedes the separator character when writing the Frogans
address.

Thus in an address with left-to-right directionality, the network

name is displayed to the left of the separator character. 1In a
Frogans address with right-to-left directionality, the network name

OP3FT Frogans Technology [Page 18]

IFAP 1.0 Adopted March 2014

is displayed to the right of the separator character.

Just like the entire Frogans address is an identifier (of a Frogans
site), the network name alone is also an identifier (of a Frogans
network). Certain restrictions apply to its first character.

The first character of the network name in a Frogans address cannot
be:

* a combining character, i.e. a character with the General Category
of M (Combining Mark)

* a decimal number, i.e. a character with the General Category of Nd
(Decimal Number)

* any of the following characters: U+0375 GREEK LOWER NUMERAL SIGN,
U+05F3 HEBREW PUNCTUATION GERESH, U+05F4 HEBREW PUNCTUATION
GERSHAYIM, U+06FD SIGN SINDHI AMPERSAND, U+06FE ARABIC SIGN SINDHI
POSTPOSITION MEN

4.3. Site name

The site name of a Frogans address is used to represent the name of a
Frogans site within a Frogans network.

In a Frogans address, the site name is the string of characters that
follows the separator character when writing the Frogans address.

Thus in an address with left-to-right directionality, the site name
is displayed to the right of the separator character. In a Frogans
address with right-to-left directionality, the site name is displayed
to the left of the separator character.

Just like the entire Frogans address and the network name are
identifiers, the site name alone is also an identifier (of a Frogans
site within a Frogans network). Certain restrictions apply to its
first character.

The first character of the site name of a Frogans address is subject
to the same rules that apply to the first character of the network
name of a Frogans address (see Section 4.2).

4.4. Connector characters
The structure of a Frogans addresses includes special characters that

act as connectors. These characters, called connector characters,
are the following:

OP3FT Frogans Technology [Page 19]

IFAP 1.0 Adopted March 2014

- the U+002D HYPHEN-MINUS character

- the U+00B7 MIDDLE DOT character

- the U+30FB KATAKANA MIDDLE DOT character

- the U+0FOB TIBETAN MARK INTERSYLLABIC TSHEG character

The use of these connector characters is optional. One or more
connector characters can be included in Frogans addresses to make it
easier to read network names or site names that contain several
words, by inserting connector characters between those words.

The following rules apply to the use of connector characters in the
network name of a Frogans address:

* A connector character cannot be the first nor the last character
of the network name.

* Two or more consecutive connector characters cannot be included in
the network name.

* The character following a connector character in the network name
cannot be a combining character. Combining characters are defined
in Section 3.2.

The rules above concerning the use of connector characters in the
network name of a Frogans address also apply to the site name of a
Frogans address.

As a result of the rules defined in Section 3.3, the following
characters are not eligible in Frogans addresses and therefore cannot
be used to connect different words included in a network name or a
site name: the U+0020 SPACE character ("™ "), the U+0027 APOSTROPHE
character ('), the U+002E FULL STOP character ("."), and the U+003A
COLON character (":").

For assistance in implementing a function to verify the structure of
a Frogans address, see Appendix C.5.

OP3FT Frogans Technology [Page 20]

IFAP 1.0 Adopted March 2014

5. Generating the reference form of a Frogans address

In order to generate the reference form of Frogans addresses, it is
necessary to define and generate both the reference form of a network
name and the reference form of a site name.

The reference form of a network name, a site name, or a Frogans
address is generated from strings that comply with all the preceding
rules in this specification.

The Unicode Standard [Unicode] defines a process to compare two
identifiers for case-insensitive equality, referred to as caseless
matching for identifiers. 1In this process, identifiers are compared
by applying a string transformation and comparing the resulting
strings. This string transformation is toNFKC Casefold(NFD (X)),
where X represents an identifier string (see the Unicode Standard,
section 3.13 Default Case Algorithms, definition D147).

The reference form of the network name of a Frogans address is the
string generated by applying to the network name the string
transformation used in the process of caseless matching for
identifiers defined in the Unicode Standard.

The reference form of the site name of a Frogans address is the
string generated by applying to the site name the string
transformation used in the process of caseless matching for
identifiers defined in the Unicode Standard.

The reference form of a Frogans address is the string generated by
concatenating the reference form of the network name, the separator
character, and the reference form of the site name.

Since the separator character is not modified by the process of
caseless matching for identifiers defined in the Unicode Standard,
the reference form of a Frogans address is equivalent to the string
generated by applying to the Frogans address the string
transformation used in the process of caseless matching for
identifiers defined in the Unicode Standard.

Due to the use of the caseless matching process, the number of code
points in the reference form of a network name, a site name, or a
Frogans address may be shorter or longer than the number of code
points in that network name, site name, or Frogans address under
certain conditions.

For example, the caseless matching process removes the U+200C ZERO

WIDTH NON-JOINER code point. Conversely, it replaces the German
lowercase character "Eszett" (U+00DF LATIN SMALL LETTER SHARP S) by

OP3FT Frogans Technology [Page 21]

IFAP 1.0 Adopted March 2014

two code points (U+0073 LATIN SMALL LETTER S and U+0073 LATIN SMALL
LETTER S) .

The string transformation described in this section is coherent with
the rules defined in previous sections of this specification. Thus
the reference form also complies with all those rules.

The reference form of a network name, a site name, or a Frogans
address is used to evaluate its length and to check whether two
network names, site names, or Frogans addresses are identical.
Unlike the preferred form of a network name, a site name, or a
Frogans address, the reference form is not intended for display to
end users.

For assistance in implementing a function to generate the reference
form of a Frogans address, see Appendix C.6.

OP3FT Frogans Technology [Page 22]

IFAP 1.0 Adopted March 2014

6.

Evaluating the length of a Frogans address

In order to evaluate the length of Frogans addresses, it 1s necessary
to define and evaluate both the length of a network name and the
length of a site name.

The length of the network name of a Frogans address is the number of
characters in the reference form of that network name.

The length of the site name of a Frogans address is the number of
characters in the reference form of that site name.

The following rules apply to the length of the network name and site
name in a Frogans address:

* The length of the network name is limited to between 1 and 28
characters.

* The length of the site name is limited to between 1 and 28
characters.

The length of a Frogans address equals the length of its network name
plus one for the separator character plus the length of its site
name. In other words, the length of a Frogans address equals the
number of characters in the reference form of that Frogans address.

As a result of the preceding rules, the length of a Frogans address
is limited to between 3 and 57 characters, including the network
name, the separator character, and the site name.

OP3FT Frogans Technology [Page 23]

IFAP 1.0 Adopted March 2014

7. Checking whether two Frogans addresses are identical

In order to check whether two Frogans addresses are identical, it is
necessary to define both the rule used to check whether two network
names are identical and the rule used to check whether two site names
are identical.

Two network names are identical if the characters in their reference
forms are the same.

Two site names are identical i1f the characters in their reference
forms are the same.

Two Frogans addresses are identical if both their network names and
site names are identical. In other words, two Frogans addresses are
identical if the characters in their reference forms are the same.
For example, all the following network names are identical:

- mynetwork (reference form)

- MyNetwork

- MYNETWORK

For example, all the following site names are identical:

- mysite (reference form)

- MySite

- MYSITE

For example, all the following Frogans addresses are identical:

- mynetwork*mysite (reference form)

- MyNetwork*MYSITE

- MYNETWORK*MySite

However, the following Frogans addresses are not identical:

- my-network*MySite
- mynetwork*MySite

As a result of the method used to generate reference forms (see

Section 5), two network names, site names, or Frogans addresses may
be identical even though they do not have the same number of code
points.

OP3FT Frogans Technology [Page 24]

IFAP 1.0 Adopted March 2014

8. Usage of ASCII-encoded Frogans addresses

Unlike Internationalized Domain Names (IDNs) [IDNA2008], which are
built upon ASCII-based domain names, Frogans addresses are based
directly on the Unicode Standard [Unicode] and are international by
design. Thus standard encoding methods such as UTF-8 [UTF-8] or
UTF-16 [UTF-16] can generally be used for their transmission or
storage.

However, UTF-8 and UTF-16, which produce binary sequences, may be
unsuitable under certain specific circumstances such as:

* transmitting Frogans addresses using protocols requiring ASCII-
encoded data

* using Frogans addresses in file names on file systems that do not
support Unicode

Under such circumstances, it is necessary to encode Frogans addresses
into ASCII [ASCII].

This section provides a uniform method for encoding Frogans addresses
into ASCII to be used by applications that encounter these specific
circumstances.

This method is simple: it uses 36 ASCII characters from 0 to 9 and
from a to z (lowercase) and provides a fixed-length encoding scheme
with four ASCII characters per code point. Given the maximum length
of a Frogans address (see Section 6), the maximum number of
characters in an ASCII-encoded Frogans address is 228.

ASCII-encoded Frogans addresses are used for technical purposes only.
Except under the specific circumstances described above, ASCII-
encoded Frogans addresses are not displayed to end users. For
example, an application cannot use an ASCII-encoded Frogans address
as a fall-back solution for displaying a Frogans address containing
international characters that it cannot display correctly.

An ASCII-encoded Frogans address is generated using the following
procedure.

First, the following three-step process is applied to each code point
in the Frogans address string:

OP3FT Frogans Technology [Page 25]

IFAP 1.0 Adopted March 2014

1. Given X the integer value of the code point, four integer values
V1l, V2, V3, and V4 are calculated as follows:

V1 ((X DIV 36) DIV 36) DIV 36
v2 ((X DIV 36) DIV 36) MOD 36
V3 = (X DIV 36) MOD 36

V4 = X MOD 36

where DIV is an arithmetic operator which represents the integer
division of one number by another, and MOD is an arithmetic
operator which represents the remainder after an integer division
of one number by another.

As a result of the calculation, the values V2, V3 and V4 are
between 0 and 35 inclusive. Since all code points defined in the
Unicode Standard are lower than 1,114,111 (the code point
U+10FFFF), the value V1 is between 0 and 23.

2. For each value Vi (where i ranges from 1 to 4), an ASCII
character Ci is mapped as follows:

* If the value Vi is between 0 and 9 inclusive, then the value of
the ASCII code for character Ci equals (48+Vi), corresponding
to the range of ASCII characters from 0 to 9.

* If the value Vi is between 10 and 35 inclusive, then the value
of the ASCII code for character Ci equals (87+Vi),
corresponding to the range of lowercase ASCII characters from a
to z.

3. A four-character ASCII string is generated by concatenating CI1,
C2, C3, and C4 in that order.

Examples:

* The four-character ASCII-encoded string representing the lowest
code point for an eligible character in a Frogans address (the
U+002A ASTERISK character) is 0016.

* The four-character ASCII-encoded string representing the highest
code point for an eligible character in a Frogans address (the
U+2B81D CJK UNIFIED IDEOGRAPH character) is 3tib5.

Second, after applying the above three-step process to each code
point in the Frogans address string, all the generated four-character
ASCII strings are concatenated in the order of the code points in the
Frogans address string to create the ASCII-encoded Frogans address.

OP3FT Frogans Technology [Page 26]

IFAP 1.0 Adopted March 2014

The uniform method provided above for encoding a Frogans address into
ASCII also applies for encoding a network name or a site name into
ASCII, should ASCII-encoded network names or site names be required
in an application that encounters the specific circumstances
described in the beginning of this section.

OP3FT Frogans Technology [Page 27]

IFAP 1.0 Adopted March 2014

9. References
9.1. Normative references

[ASCIT] American National Standards Institute (formerly United
States of America Standards Institute), "USA Code for
Information Interchange", ANSI X3.4-1968, 1968.

[RFC5892] Falstrom, P., "The Unicode Code Points and
Internationalized Domain Names for Applications (IDNA)",
RFC 5892, August 2010,
<http://www.ietf.org/rfc/rfc5892.txt>.

[UAX9] The Unicode Consortium, "Unicode Standard Annex #9:
Unicode Bidirectional Algorithm", Version 6.3.0,
Revision 29, September 2013,
<http://www.unicode.org/reports/tr9/tr9-29.html>.

[UAX15] The Unicode Consortium, "Unicode Standard Annex #15:
Unicode Normalization Forms", Version Unicode 6.3.0,
Revision 39, September 2013,
<http://www.unicode.org/reports/trl5/tr15-39.html>.

[Unicode] The Unicode Consortium, "The Unicode Standard",
Version 6.3.0, (Mountain View, CA: The Unicode Consortium,
2013. ISBN 978-1-936213-08-5), September 2013,
<http://www.unicode.org/versions/Unicode6.3.0/>.

[UTS39] The Unicode Consortium, "Unicode Technical Standard #39:
Unicode Security Mechanisms", Version 6.3.0, Revision 7,
November 2013,
<http://www.unicode.org/reports/tr39/tr39-7.html>.

9.2. Informative references

[BYLAWS] OP3FT, "Bylaws of the French Fonds de Dotation OP3FT,
Organization for the Promotion, Protection and Progress of
Frogans Technology", March 2012,
<https://www.op3ft.org/en/resources/bylaws/access.html>.

[FNSL] STG Interactive S.A., "Frogans Network System Language",
Version 3.0, May 2004,
<https://www.frogans.org/en/resources/fnsl/access.html>.

This technical specification of the Frogans technology was
granted free of charge and irrevocably by STG Interactive
S.A. to the OP3FT, as part of the initial endowment of the
OP3FT when the latter was created in 2012.

OP3FT Frogans Technology [Page 28]

IFAP 1.0 Adopted March 2014

[IDNA2008]
Klensin, J., "Internationalized Domain Names for
Applications (IDNA): Definitions and Document Framework",
RFC 5890, August 2010,
<http://www.ietf.org/rfc/rfc5890.txt>.

IDNA2008 includes several additional documents: RFC 5891,
RFC 5892, RFC 5893, RFC 5894, and RFC 5895.

[RFC1034] Mockapetris, P., "Domain names - concepts and facilities",
STD 13, RFC 1034, November 1987,
<http://www.ietf.org/rfc/rfcl034.txt>.

[REFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, March 1997,
<http://www.ietf.org/rfc/rfc2119.txt>.

[REFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
Resource Identifier (URI): Generic Syntax", STD 66,
RFC 3986, January 2005,
<http://www.ietf.org/rfc/rfc3986.txt>.

[RFC5893] Alvestrand, H. and C. Karp, "Right-to-Left Scripts for
Internationalized Domain Names for Applications (IDNA)",
RFC 5893, August 2010,
<http://www.ietf.org/rfc/rfc5893.txt>.

[UAX31] The Unicode Consortium, "Unicode Standard Annex #31:
Unicode Identifier and Pattern Syntax", Version 6.3.0,
Revision 19, September 2013,
<http://www.unicode.org/reports/tr31/tr31-19.html>.

[UTF-16] Hoffman, P. and F. Yergeau, "UTF-16, an encoding of ISO
10646", RFC 2781, February 2000,
<http://www.ietf.org/rfc/rfc2781.txt>.

[UTF-8] Yergeau, F., "UTF-8, a transformation format of ISO

10646", STD 63, RFC 3629, November 2003,
<http://www.ietf.org/rfc/rfc3629.txt>.

OP3FT Frogans Technology [Page 29]

IFAP 1.0 Adopted March 2014

Appendix A. IFAP lookup tables

This appendix describes the IFAP lookup tables used in Appendix C
which provides assistance in implementing this specification.

This appendix is not normative. Its contents do not replace the
definitions and rules previously set forth in this specification, nor
do they define any new rules.

IFAP lookup tables are files containing pre-processed lists of code
points. This data is provided separately from this specification
document in order to make the data easier to use for developers.
IFAP lookup tables are accessible at the same permanent URL as this
specification document (see the first page of this document).

Each IFAP lookup table is assigned a unique reference in LTnn Label
format, where nn is a zero-padded two-digit sequential number and
Label is a label where words are separated by the underscore ()
character.

Each IFAP lookup table is provided in CSV format. The content of the
file has the following characteristics:

* The file is encoded using the ASCII character set [ASCII]. Each
line of the file ends with the ASCII character LF.

* The first lines in the file are comments starting with the ASCII

character # (number sign). They include the IFAP lookup table
reference, a brief description of its contents and use, the file
name, and the file creation date. The comments also include: the

list of third-party source materials and the list of other IFAP
lookup tables used to create the lookup table; the description of
the fields in the lookup table; and the method used to compute the
field values in the lookup table.

* The first line of the file that is not a comment contains the
field names of the lookup table, in uppercase, separated by the
ASCII character comma (,).

* FEach subsequent line of the file is a data line containing field
values, separated by the ASCII character comma (,).

* The number of fields per data line remains constant. It is
possible for a lookup table to contain only one field.

* The name of the first field is CODE_POINT. The value of this

field represents either an individual code point or a continuous
range of code points. Individual code points are represented in

OP3FT Frogans Technology [Page 30]

IFAP 1.0 Adopted March 2014

'cphex' format, and ranges of code points in 'cphexl..cphex2'
format, where 'cphex', 'cphexl', and 'cphex2' contain between four
and six uppercase hexadecimal digits, and '..' is two consecutive
ASCII full stop characters (.). The first and last points of a
range are included in the range.

The next fields contain information related to the code point or
range of code points defined in the first field. Any code point
included in the value of such fields is represented using the
'cphex' format described above. The value of such fields may be
empty on some data lines.

A code point cannot be listed in the first field of more than one
data line, neither as an individual code point nor within a range.
The data lines in the file are sorted in increasing order by the
code point number of the first field.

No comments are included between two data lines, at the end of a
data line, or at the end of the file.

The remainder of this section lists all the 11 IFAP lookup tables
used in Appendix C.

See the comments in each lookup table for a brief description of its
contents and use.

The hash value provided for each IFAP lookup table is computed using
the secure hash algorithm SHA-256 of the National Institute of
Standards and Technology.

OP3FT

Reference: LTOl Character_ Set

File name: ifaplO-adopted.spec.ltOl-character-set.txt

File size: 10,833 bytes

Total number of lines: 659

Total number of data lines: 542

File sha256 hash:
1ffel10484791a3194e89%9a6b06a4165e3014d46db4b1350b714a5a54ca24bbeal8

Reference: LT02 Canonical Mapping

File name: ifaplO-adopted.spec.lt02-canonical-mapping.txt

File size: 228,876 bytes

Total number of lines: 13,433

Total number of data lines: 13,226

File sha256 hash:
29fd6a349286d97bfed49a4fd2adae0835¢cc98£f4cf46420912d031e43fb725101

Frogans Technology [Page 31]

IFAP 1.0 Adopted March 2014

OP3FT

Reference: LTO03 Compatibility Mapping

File name: ifaplO-adopted.spec.lt03-compatibility-mapping.txt
File size: 52,480 bytes

Total number of lines: 3,796

Total number of data lines: 3,656

File sha256 hash:
ef488b52a974c07£d2c9926329%ecf74d79bb3a731e7bf4f412d382a6dcacfc32

Reference: LT04 Combining Class

File name: ifaplO-adopted.spec.lt04-combining-class.txt

File size: 8,685 bytes

Total number of lines: 424

Total number of data lines: 289

File sha256 hash:
c067080aa0£8014d274b38bbaef8f0c86ef6c43c69d199901d691d95e22¢3953

Reference: LT05 NFKC Stable

File name: ifaplO-adopted.spec.lt05-nfkc-stable.txt

File size: 9,846 bytes

Total number of lines: 670

Total number of data lines: 568

File sha256 hash:
8ff417be6fcblbd42eeb62025¢c220ddf64b038442a91b2e471f6060a48c90d1la4

Reference: LT06 Combining Marks

File name: ifaplO-adopted.spec.lt06-combining-marks.txt

File size: 7,361 bytes

Total number of lines: 339

Total number of data lines: 216

File sha256 hash:
8e36bafab2858f93619db69%ecec3feba’7e5¢c5£38cf1£51035b455e2¢c613d8d0al

Reference: LT07 Joining Type

File name: ifaplO-adopted.spec.lt07-joining-type.txt

File size: 8,628 bytes

Total number of lines: 439

Total number of data lines: 310

File sha256 hash:
97a52c54b6ba9239%ebcedc81lbdd37370d0b8ab6884de023¢cc86a4951c79d62¢c

Reference: LT08 Eligible Characters

Frogans Technology [Page 32]

IFAP 1.0 Adopted March 2014

File name: ifaplO-adopted.spec.lt08-eligible-characters.txt

File size: 15,484 bytes

Total number of lines: 802

Total number of data lines: 588

File sha256 hash:
82837ce873df4afd5868d2b73b5b7b64e6£68dc403749d9d0d4736163c13cl42

- Reference: LT09 Bidi Class

File name: ifaplO-adopted.spec.lt09-bidi-class.txt

File size: 7,953 bytes

Total number of lines: 329

Total number of data lines: 198

File sha256 hash:
ecf95ba655bc0d0£f2826fab554af95e8a500ec626705806aad02ccdcd4aad999%a

- Reference: LT10 Decimal Numbers

File name: ifaplO-adopted.spec.ltl0-decimal-numbers.txt

File size: 5,383 bytes

Total number of lines: 156

Total number of data lines: 36

File sha256 hash:
c900eb69d2£90d7a93429e31d69099227de52937a209dab3e33b5£a02c7958c2

- Reference: LT11 NFKC Case Folding

File name: ifaplO-adopted.spec.ltll-nfkc-case-folding.txt

File size: 11,743 bytes

Total number of lines: 714

Total number of data lines: 579

File sha256 hash:
d7cbfeebdf13b9c0b52£630a0b264300a4975e365280774f9%eb7cdefdf370dd9

OP3FT Frogans Technology [Page 33]

IFAP 1.0 Adopted March 2014

Appendix B. Pseudocode syntax

This appendix describes the syntax and conventions for the pseudocode
used in Appendix C which provides assistance in implementing this
specification.

This appendix is not normative. Its contents do not replace the
definitions and rules previously set forth in this specification, nor
do they define any new rules.

The pseudocode uses the following syntax and conventions.

All keywords are written in uppercase. The names of all functions,
variables, and data objects are written in lowercase.

Spaces are used to separate elements.
Braces ({ and }) are used to delimit blocks of pseudocode.

To improve legibility, the text of the comments is not included in
the pseudocode. Instead, comments are referenced by a number between
angle brackets (< and >) at the end of a line. For example: <1>
indicates comment number 1.

The following statements are used:

* FUNCTION: defines a function. The keyword FUNCTION is followed by
the function name, then by a list of one or more parameter names
between parentheses.

* VAR: defines a variable used in a function. The VAR keyword is
followed by the name of the variable.

* RETURN: exits a function. They keyword RETURN is followed by the
value returned by the function.

* CALL: calls a function. The keyword CALL is followed by the name
of the called function, then by a list of one or more parameter
values between parentheses. The list matches the definition of
the called function.

* TIF: tests an expression. The IF keyword is followed by the
expression between parentheses, then by a block of pseudocode
between braces to be executed if the expression evaluates to true.

* ELSE: follows an IF statement. The ELSE keyword is followed

either by another IF statement or by a block of pseudocode, which
are executed if the expression defined by the previous IF

OP3FT Frogans Technology [Page 34]

IFAP 1.0 Adopted March 2014

statement evaluates to false. The pseudocode may contain
cascading ELSE statements.

* FOR: defines a loop associated with an index. The FOR keyword is
followed by the name of the index, the equal sign (=), the first
value included in the index range, the TO keyword, then by the
last value included in the index range, then by a block of
pseudocode to be executed for each iteration of the loop. If the
first or the last value of the index range is defined by an
expression, then that expression is included between parentheses.
If the last value in the index range is lower than the first
value, then the TO keyword is replaced by the DOWNTO keyword. The
index is incremented or decremented by one at each iteration of
the loop.

* WHILE: defines a loop associated with an expression. The WHILE
keyword is followed by the expression between parentheses, then by
a block of pseudocode between braces to be executed for each
iteration of the loop if the expression evaluates to true.
Whenever the expression is evaluated to false, execution continues
after the block of pseudocode.

* BREAK: exits a FOR or WHILE loop. The BREAK keyword is not
followed by other keywords. Execution continues after the block

of pseudocode defined in the loop.

The following logical expressions are used:

* (a == b) tests whether the value of a equals the value of Db.

* (a !'= b) tests whether the value of a is different from the value
of b.

* (c OR d) tests whether either of the expressions c or d evaluates
to true.

* (c AND d) tests whether both the expressions c¢ and d evaluate to
true.

* (NOT c) negates the expression c.
Parentheses are used to combine groups of logical expressions.

The equal sign (=) 1is used in a block of pseudocode to assign a value
to a variable.

The remainder of this section describes two data objects that are
specific to the implementation of this specification:

OP3FT Frogans Technology [Page 35]

IFAP 1.0 Adopted March 2014

TABLE: defines a read-only data object containing an IFAP lookup
table. For a description of the IFAP lookup table contents, see
Appendix A.

LIST: defines a read/write data object containing a list of code
points.

The following methods are defined for a TABLE data object named
my table:

*

my table.CONTAINS (code point): looks up in my table a code point
with the value of code point. This method returns either true if
a code point with value of code point is found, or false
otherwise.

my table.LOOKUP (code point, field name): looks up in my table the
value of the field called field name for the code point equal to
the value of code point. When used in the pseudocode, the name of
the field is preceded by the number sign (#). This method returns
either the value of the field called field name for the code point
with the value of code point, or NULL if there is no such code
point.

my table.FIND (logical expression): searches in my table for a
code point whose field values match certain conditions defined in
the logical expression provided as a parameter. In the logical
expression, the names of the fields that the conditions apply to
are preceded by the number sign (#). This method returns either
the value of a code point meeting the conditions, or NULL if there
is no such code point.

The following property and methods are defined for a LIST data object
named my list:

*

OP3FT

my list.COUNT: returns the number of code points in the list

my list.GET (i): returns the value of the code point found at
index 1 in the list. The range of index i is from 0 (the first
code point) to (my list.COUNT - 1) (the last code point in the
list).

my list.APPEND (code point series): appends one or more code
points to the list. The code points to append are provided as

arguments separated by commas.

my list.SET (i, code point): sets the code point found at index i
in the list to the value of code point.

Frogans Technology [Page 36]

IFAP 1.0 Adopted March 2014

* my list.REMOVE (i): removes the code point at index i from the
list.

OP3FT Frogans Technology [Page 37]

IFAP 1.0 Adopted March 2014

Appendix C. Assistance in implementing the specification

This appendix provides a series of processes that can be used to
implement this specification.

This appendix is not normative. Its contents do not replace the
definitions and rules previously set forth in this specification, nor
do they define any new rules.

This appendix does not cover the following parts of the
specification, as they do not present any particular implementation
difficulties: Evaluating the length of a Frogans address (Section 6),
Checking whether two Frogans addresses are identical (Section 7), and
Usage of ASCII-encoded Frogans addresses (Section 8),

Given the limited length of Frogans addresses (see Section 6), the
processes are designed to minimize the size of the IFAP lookup tables
rather than to optimize process performance.

The six sections in this appendix provide for each function: the
function name and description; the functions it is called by and the
functions it calls; the IFAP lookup tables used by the function; the
input parameters; the possible values returned by the function; a
numbered list of comments related to the pseudocode; and finally
pseudocode describing the function. Comments in the pseudocode are
indicated by a number between angle brackets (< and >).

C.1l. String character set

This section provides assistance in implementing a process that
verifies whether the code points of a candidate string are in the
character set applicable to Frogans addresses.

One function is required to implement this process:
FUNCTION |cl verify character set]

Description:
This is the main function for this process.

It verifies each code point in the candidate string by
performing a look-up in IFAP lookup table LTOl Character Set.
If any code point in the candidate string is not found, then it
is invalid and the entire candidate string is rejected.
Otherwise, if all the code point look-ups are successful, then
the candidate string is accepted.

OP3FT Frogans Technology [Page 38]

IFAP 1.0 Adopted March 2014

Called by:
none

Calls:
none

IFAP lookup tables used:
- LTO01 Character_ Set

Input:
- codepoints: a LIST data object containing code points that
represent the candidate string
Returns:

true if the candidate string is accepted, or false otherwise

Comments:
none

Pseudocode:

FUNCTION cl verify character set (codepoints)
{
TABLE table LTO1
VAR cur_ cp
VAR index
FOR index = 0 TO (codepoints.COUNT - 1)
{

IF (NOT table LTO1.CONTAINS (cur_ cp))

{
RETURN false

}

|
|
|
|
|
|
|
cur_cp = codepoints.GET (index)
|
|
|
|
|
RETURN true |

|

 —_— - N

C.2. String formation
This section provides assistance in implementing a process that
verifies whether a candidate string is compliant with string
formation.

Eight functions are required to implement this process:

FUNCTION |c2 verify string formation|

OP3FT Frogans Technology [Page 39]

IFAP 1.0 Adopted March 2014

OP3FT

Description:
This is the main function for this process.

It generates an NFKC normalized string from the candidate
string and then compares the two strings. If there is any
difference whatsoever, i.e. if their code points are not
exactly the same or are not in exactly the same order, then the
candidate string is rejected.

Otherwise, the function checks whether the candidate string
contains more than 30 consecutive combining characters. This
involves looking up each code point in the candidate string in
IFAP lookup table LT06 Combining Marks to determine whether the
code point is a combining character. If the candidate string
contains more than 30 consecutive combining characters, then
the candidate string is rejected.

Otherwise, the function checks whether the candidate string
contains either the U+200C ZERO WIDTH NON-JOINER or the U+200D
ZERO WIDTH JOINER code point. If so, it checks whether those
code points meet the contextual conditions for being included
in a Frogans address string. If the code point does not meet
those conditions, then the candidate string is rejected.

Otherwise the candidate string is accepted.

Called by:
none

Calls:
- |c2 normalize nfkc|
- |c2 verify joiner 200c_sequence|
- |c2 verify joiner virama|

IFAP lookup tables used:
- LTO06_ Combining Marks

Input:
- codepoints: a LIST data object containing code points that
represent the candidate string
Returns:

true if the candidate string is accepted, or false otherwise

Comments:
none

Frogans Technology [Page 40]

IFAP 1.0 Adopted March 2014

Pseudocode:

FUNCTION c2 verify string formation (codepoints)
{
TABLE table LTO06
LIST work cps
VAR index
VAR cur cp
VAR combining marks count
work cps = CALL c2 normalize nfkc (codepoints)
IF (work cps != codepoints)
{
RETURN false
}
combining marks count = 0
FOR index = 0 TO (codepoints.COUNT - 1)
{
cur_cp = codepoints.GET (index)
IF (table LT06.CONTAINS (cur_cp))
{
combining marks count = combining marks count + 1
IF (combining marks count > 30)
{
RETURN false
}
}
ELSE
{
combining marks count = 0
}
}
FOR index = 0 TO (codepoints.COUNT - 1)
{
cur_cp = codepoints.GET (index)
IF (cur_cp == U+200C)
{
IF (CALL c2 verify joiner 200c_sequence
(codepoints, index) == false)

IF (CALL c2 verify joiner virama
(codepoints, index) == false)

RETURN false

}
IF (cur cp == U+200D)

—_— N

OP3FT Frogans Technology [Page 41]

IFAP 1.0 Adopted March 2014

IF (CALL c2 verify joiner virama
(codepoints, index) == false)

RETURN false

}
RETURN true

FUNCTION |c2 normalize nfkc|

Description:
This is a sub-function of the string formation process.

It applies a three-step procedure to generate an NFKC
normalized string from an input string of code points.

Called by:
- |c2 verify string formation|

Calls:
- |c2 decompose compatibility|
- |c2 reorder|
- |c2 compose]

IFAP lookup tables used:

- none
Input:
- codepoints: a LIST data object containing code points that
represent the string to be normalized
Returns:

the NFKC normalized string

Comments:
none

Pseudocode:

r

| FUNCTION c2 normalize nfkc (codepoints)

| { |
| LIST work cps |
| work cps = codepoints

OP3FT Frogans Technology [Page 42]

IFAP 1.0 Adopted March 2014

| work cps = CALL c2 decompose compatibility (work cps)
| work cps = CALL c2 reorder (work cps)

| work cps = CALL c2 compose (work cps)

| RETURN work cps

|

FUNCTION |c2 decompose compatibility|

Description:
This is a sub-function of the string formation process.

It is part of step 1 in the three-step procedure for generating
an NFKC normalized string from an input string of code points.

This function performs a compatibility decomposition on each
code point in the input string.

Called by:
- |c2 normalize nfkc|

Calls:
- |c2 decompose compatibility cpl

IFAP lookup tables used:

- none
Input:
- codepoints: a LIST data object containing code points that
represent the string to be decomposed
Returns:

a string containing the compatibility decomposition of each
code point in the input string

Comments:
none

Pseudocode:

VAR cur_cp
VAR index

14
|
|
| LIST work cps
|
|
|
| FOR index = 0 TO (codepoints.COUNT - 1)

|
|
|
LIST temporary cps |
|
|
|

OP3FT Frogans Technology [Page 43]

IFAP 1.0 Adopted March 2014

| |
| cur cp = codepoints.GET (index)
| temgoraryicps = CALL c2 decompose compatibility cp |
| (cur_cp) |
| work cps.APPEND (temporary cps)
| } |
| RETURN work cps |
| |

]

FUNCTION |c2 decompose compatibility cp]

Description:
This is a sub-function of the string formation process.

It is part of step 1 in the three-step procedure for generating
an NFKC normalized string from an input string of code points.

This function uses a recursive algorithm to decompose a code
point. This requires examining the canonical decomposition of
the input code point, first in IFAP lookup table

LTO02 Canonical Mapping and then in IFAP lookup table

LTO3 Compatibility Mapping. A given code point cannot exist in
both tables. If a code point does not exist in either table,
then it is included in the normalized string as it is.

The recursive algorithm in this function is based on the rules
set forth in the Unicode Standard [Unicode] section 3.7
Decomposition, D65 compatibility decomposition.

Called by:
- |c2 decompose compatibility|
- |c2 decompose compatibility cpl|. The function calls itself
recursively.

Calls:
- |c2 decompose compatibility cpl|. The function calls itself
recursively.

IFAP lookup tables used:
- LT02 Canonical Mapping
- LTO03 Compatibility Mapping

Input:
- a_codepoint: the code point to be decomposed

OP3FT Frogans Technology [Page 44]

IFAP 1.0 Adopted March 2014

Returns:
a list of code points representing the decomposed form of the
input code point

Comments:
<1> if cur cp exists in the table, the function calls itself
<2> 1if cur cp exists in the table, the function calls itself

Pseudocode:
FUNCTION c2 decompose compatibility cp (a_codepoint)
{
TABLE table LTO02
TABLE table_LTO3
LIST decomposition cps
LIST work cps
VAR cur_ cp
VAR index
IF (table LT02.CONTAINS (a_codepoint))
{
decomposition cps = table LT02.LOOKUP (a_codepoint,
#canonical mapping)
FOR index = 0 TO (decomposition cps.COUNT - 1)
{
cur_cp = decomposition cps.GET (index)
work cps.APPEND (CALL c2 decompose compatibility cp

}
RETURN work cps
}
IF (table LTO03.CONTAINS (a_codepoint))
{
decomposition cps = table LT03.LOOKUP (a codepoint,
#compatibility mapping)
FOR index = 0 TO (decomposition cps.COUNT - 1)
{
cur cp = decomposition cps.GET (index)
work cps.APPEND (CALL c2 decompose compatibility cp
(cur_cp)) <2>
}
RETURN work cps
}
work cps.APPEND (a_ codepoint)

14
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| (cur_cp)) <1>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| RETURN work cps
|

OP3FT Frogans Technology [Page 45]

IFAP 1.0 Adopted March 2014

FUNCTION |c2 reorder|

Description:
This is a sub-function used in both the string formation
process and in the process for generating the reference form.

It is part of step 2 in the procedure for generating a
normalized string from an input string of code points. It is
called by three different functions: one to generate the NFKC
form, the second to generate the NFD form, and the third to
generate the NFC form.

After the code points have been decomposed in Step 1, they are
reordered according to the rules set forth in the Unicode
Standard, Section 3.11 Normalization Form, D109 Canonical
Ordering Algorithm. This requires examining the combining
class of each code point in IFAP lookup table

LT04 Combining Class.

Called by:
- |c2 normalize nfkc|
- |c6_normalize nfd]
- |c6_normalize nfc|

Calls:
none

IFAP lookup tables used:
- LT04 Combining Class

Input:
- codepoints: a LIST data object containing code points that
represent the string to be reordered
Returns:

a list of code points representing the reordered string

Comments:
<1> Examine and compare the canonical combining class of the
previous and the current code point in the input string.

Pseudocode:

FUNCTION c2 reorder (codepoints)

{ |
TABLE table LT04 |
LIST work cps |

OP3FT Frogans Technology [Page 46]

IFAP 1.0 Adopted

VAR swapped
VAR index
VAR prev_ccc
VAR cur ccc
VAR temp cp
work cps = codepoints
swapped = true
WHILE (swapped)
{
swapped = false
FOR index = 1 TO (work cps.COUNT - 1)
{
prev_ccc = table LTO04.LOOKUP

IF (prev_ccc == NULL)
{
prev_ccc = 0
}
cur_ccc = table LTO04.LOOKUP

IF (cur_ ccc == NULL)
{
cur_ccc = 0
}
IF ((cur _ccc != 0) AND

(prev_ccc > 0) AND
(prev_ccc > cur_ccc)

)

work cps.SET (index, temp cp)
swapped = true

}
}
RETURN work cps

 —

FUNCTION |c2 compose|

OP3FT

Description:

(work cps.GET (index -
#canonical combining class)

(work cps.GET (index),
#canonical combining class)

temp cp = work cps.GET (index - 1)

work cps.SET (index - 1, work cps.GET (index))

March 2014

<1>

This is a sub-function used in both the string formation
process and in the process for generating the reference form.

Frogans Technology

[Page 47]

IFAP 1.0

Cal

Cal

IFA

Inp

Ret

Adopted March 2014

It is part of step 3 in the procedure for generating a
normalized string from a candidate string of code points. It
is called by two different functions: one to generate the NFKC
form and the second to generate the NFC form.

After all the code points have been decomposed in Step 1 and
then reordered in Step 2, they are re-composed to create the
normalization form required. The composition procedure is
based on the rules set forth in the Unicode Standard section
3.11 Normalization Forms, D117 Canonical Composition Algorithm.

The function examines all the code points in the input string
to determine whether it contains two code points that can be
combined, depending on their canonical combining class (ccc)
read in IFAP lookup table LT04 Combining Class. If so, it
combines those code points into a single code point. Then it
continues to examine the rest of the input string.

led by:

- |c2 normalize nfkc|
- |c6_normalize nfd|
- |c6_normalize nfc|

1s:
none

P lookup tables used:
- LT02 Canonical Mapping
- LT04 Combining Class

ut:

- codepoints: a LIST data object containing code points that
represent the string to be composed

urns:

a list of code points representing the composed input string.

Comments:

<1>

<2>

OP3FT

Starter code point in the code point string. For a code
point to be a valid starter, the value of the

CANONICAL COMBINING CLASS field (ccc) in IFAP lookup table
LT04 Combining Class must equal O.

For each code point in temporary cps, determine its starter,
previous, and current code points.

Frogans Technology [Page 48]

IFAP 1.0 Adopted March 2014
<3> Also determine the ccc of the next and previous code points.
<4> Read each line in IFAP lookup table LT02 Canonical Mapping to

determine whether starter cp and cur cp can be combined into
a single code point. If so, set the composite variable to
the combined code point
<5> 1If these conditions are met, then replace code point at
starter index with the value of the composite variable and
remove the temporary code point used for the composition.
<6> If true, then the code point at index is a valid starter code
point.
Pseudocode:
)
| FUNCTION c2 compose (codepoints)
Ao |
| TABLE table LTO0Z2 |
| TABLE table LTO04 |
| LIST temporary cps |
| VAR starter index |
| VAR starter ccc |
| VAR starter cp <1> |
| VAR prev_cp |
| VAR cur_ cp |
| VAR prev_ccc |
| VAR cur_ccc |
| VAR composite |
| LIST candidate cps |
| VAR index |
| VAR length |
| temporary cps = codepoints
| starter index = 0 |
| starter cp = temporary cps.GET (starter index)
| starter ccc = table LT04.LOOKUP
| (starter cp, #canonical combining class) |
| IF (starter ccc == NULL)
| { |
| starter ccc = 0 |
| } |
| length = temporary cps.COUNT
| index = 1 |
| WHILE (index < length)
| { <2> |
| starter cp = temporary cps.GET (starter index)
| prev_cp = temporary cps.GET (index - 1)
| cur_cp = temporary cps.GET (index)
| prev_ccc = table LTO04.LOOKUP <3> |
| (prev_cp, #canonical combining class) |
OP3FT Frogans Technology [Page 49]

IFAP 1.0 Adopted March 2014

IF (prev_ccc == NULL)
{
prev _ccc = 0
}
cur_ccc = table LT04.LOOKUP
(cur_cp, #canonical combining class)

IF (cur_ccc == NULL)
{
cur ccc = 0
}
composite = 0

IF (starter ccc == 0)
{
candidate cps.APPEND (starter cp, cur cp)
composite = table LTO02.FIND (<4>
(#full composition exclusion == 0)
AND (#canonical mapping ==
candidate cps)

IF (composite == NULL)
{
composite = 0
}
IF ((composite != 0) AND
((prev_ccc < cur_ccc) OR (prev_ccc == 0)) <5>

)

temporary cps.SET (starter index, composite)
temporary cps.REMOVE (index)
length = length -1

}

ELSE

{
IF (cur _ccc == 0) <6>
{

starter index index

starter ccc = 0

}
temporary cps.SET (index, cur_cp)
index = index + 1

}

| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| } |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| RETURN temporary cps

| |

FUNCTION |c2 verify joiner 200c_sequence]

OP3FT Frogans Technology [Page 50]

IFAP 1.0 Adopted March 2014

Description:
This is a sub-function of the string formation process.

This function checks whether the U+200C ZERO WIDTH NON-JOINER
code point at the joiner index position in the candidate string
meets the condition defined in Section 3.2 related to the
Joining Type property.

It searches for the required pattern before the U+200C ZERO
WIDTH NON-JOINER code point, and then searches for the required
pattern after that code point. If one of the two required
patterns is not found, then the candidate string is rejected.
Otherwise the candidate string is accepted.

Called by:
- |c2 verify string formation|

Calls:
- none

IFAP lookup tables used:
- LT07 Joining Type

Input:
- codepoints: a LIST data object containing code points that
represent the candidate string
- Joilner index: an index indicating the position of the U+200C
ZERO WIDTH NON-JOINER code point in the candidate string

Returns:
true if the candidate string is accepted, or false otherwise

Comments:

<1> search for a valid starting sequence before the U+200C ZERO
WIDTH NON-JOINER code point in the candidate string.

<2> search for a valid ending sequence after the U+200C ZERO
WIDTH NON-JOINER code point in the candidate string.

Pseudocode:

FUNCTION c2 verify joiner 200c_sequence (codepoints,
joiner index)

VAR index
VAR joining type

|
|
|
TABLE table LTO7 |
|
|
VAR start found |

OP3FT Frogans Technology [Page 51]

IFAP 1.0 Adopted March 2014

VAR end_ found
VAR cur_ cp
IF ((codepoints.COUNT < 3) OR (joiner index == 0) OR
(joiner index == codepoints.COUNT - 1)
)

{

RETURN false
}
start found = false <1>
FOR index = (joiner index - 1) DOWNTO 0
{

joining type = table LTO07.LOOKUP

(codepoints.GET (index), #Jjoining type)

IF (joining type == NULL)

{ joining type = 'U'

iF (joining type != 'T")

{ IF ((joining type == 'D') OR
(joining type == 'L'))

{

start found = true

}
BREAK

}
IF (NOT start found)
{

RETURN false
}
end found = false <2>
FOR index = (joiner index + 1) TO (codepoints.COUNT - 1)
{

joining type = table LTO07.LOOKUP

(codepoints.GET (index), #joining type)

IF (joining type == NULL)

{ joining type = 'U'

iF (joining type != 'T")

{ IF ((joining type == 'D') OR
(joining type == 'R'))

{

end found = true

}
BREAK

OP3FT Frogans Technology [Page 52]

IFAP 1.0 Adopted March 2014

| }
| }
| IF (NOT end found)
| {

|

| }
|

|

|
|
|
|
RETURN false |
|
RETURN true |

|

]

FUNCTION |c2 verify joiner virama|

Description:
This is a sub-function of the string formation process.

This function checks whether the code point at the joiner index
position in the candidate string is preceded by a code point
with the Canonical Combining Class property value equal to 9

(Virama) as described in Section 3.2. If not, the candidate
string is rejected. Otherwise the candidate string is
accepted.

This function can be used for candidate strings with either the
U+200C ZERO WIDTH NON-JOINER code point or the U+200D ZERO
WIDTH JOINER code point.

Called by:
- |c2 verify string formation|

Calls:
- none

IFAP lookup tables used:
- LT04 Combining Class

Input:
- codepoints: a LIST data object containing code points that
represent the candidate string
- Joiner index: an index indicating the position of either the
U+200C ZERO WIDTH NON-JOINER or U+200D ZERO WIDTH JOINER
code point in the candidate string
Returns:

true if the candidate string is accepted, or false otherwise

Comments:

OP3FT Frogans Technology [Page 53]

IFAP 1.0

C.3.

none

Adopted March 2014

Pseudocode:

...,

FUNCTION c2 verify joiner virama (codepoints, joiner index)

{

TABLE table LTO04
VAR previous_cp
VAR ccc
IF (joiner_ index == 0)
{

RETURN false
}
previous cp = codepoints.GET (joiner index - 1)
ccc = table LTO04.LOOKUP

(previous cp, #canonical combining class)

IF (ccc == NULL)
{

ccec = 0
IF (ccc != 9)
RETURN false

}
RETURN true

Eligible characters

This section provides assistance in implementing a process that
verifies whether a candidate string contains only eligible
characters.

One function is required to implement this process:

FUNCTION

OP3FT

|c3 verify eligible characters|

Description:
This is the main function for the process to determine whether
characters are eligible.

It verifies whether each

code point in the candidate string is

eligible to be used in a Frogans address. If any of the code

points are not eligible,

rejected. Otherwise the candidate string is accepted.

Frogans Technology

then the entire candidate string is

[Page 54]

IFAP 1.0 Adopted March 2014

Called by:
- none

Calls:
- none

IFAP lookup tables used:
- LT08 Eligible Characters

Input:
- codepoints: a LIST data object containing code points that
represent the candidate string
Returns:

true if the candidate string is accepted, or false otherwise

Comments:
none

Pseudocode:

FUNCTION c3 verify eligible characters (codepoints)
{ |
TABLE table LTO08 |
VAR index |
VAR cur_ cp |
VAR eligibility |
FOR index = 0 TO (codepoints.COUNT - 1)
{ |

cur_cp = codepoints.GET (index)
eligibility = table LT08.LOOKUP (cur_ cp, #is eligible) |

IF ((eligibility == NULL) OR

(eligibility == false)) |
|
|
|
|
|
|

RETURN false

}
RETURN true

 —_— - - N

C.4. Directionality
This section provides assistance in implementing a process that

verifies whether a candidate string complies with directionality
rules.

OP3FT Frogans Technology [Page 55]

IFAP 1.0 Adopted March 2014

The functions described in this section are designed to verify the
directionality of an entire Frogans address. These functions can be
easily modified to verify the directionality of a network name or a
site name. For network names, the modifications involve removing the
directionality rule applicable to the end of the string. For site
names, the modifications involve adding a parameter to provide the
directionality of the associated network name, and removing the
directionality rule applicable to the first character of the string.

Three functions are required to implement this process:
FUNCTION |c4 verify directionality|

Description:
This is the main function for the directionality process.

It verifies that the candidate string follows the
directionality rules for Frogans address strings.

First the function looks up the first code point in the
candidate string to determine its directionality. Then,
depending on the directionality of the first code point, it
calls either the |c4 verify 1ltr| or the |c4 verify rtl]
function to verify the directionality of the candidate string.
If any of the code points in the candidate string do not comply
with the IFAP directionality rules, then the entire candidate
string is rejected. Otherwise the candidate string is
accepted.

Called by:
- none

Calls:
- lcd verify 1ltr|
- lc4 verify rtl]

IFAP lookup tables used:
- LTO09 Bidi Class

Input:
- codepoints: a LIST data object containing code points that
represent the candidate string
Returns:

true if the candidate string is accepted, or false otherwise.

Comments:

OP3FT Frogans Technology [Page 56]

IFAP 1.0 Adopted

March 2014

<1> returns false because the first code point does not have a

strong directionality

Pseudocode:

{
TABLE table LTO09
VAR first cp
VAR bidi_class
first cp = codepoints.GET (0)

IF (bidi class == NULL)
{
bidi class = 'L'
}
IF (bidi class == 'L'")

{

{
RETURN false
}
}
ELSE IF ((bidi class == 'R') OR
(bidi class == 'AL'"))

{
RETURN false
}
}
ELSE
{
RETURN false

}
RETURN true

e e N ————————...

FUNCTION |c4 verify ltr|

Description:

FUNCTION c4 verify directionality (codepoints)

bidi class = table LT09.LOOKUP (first cp, #bidi class)

if (CALL c4 verify ltr (codepoints)

if (CALL c4 verify rtl (codepoints)

== false)

== false)

<1>

This is a sub-function of the directionality process.

It verifies whether the candidate string complies with the
directionality rules concerning left-to-right Frogans address
strings. First it checks that all the code points in the

OP3FT Frogans Technology

[Page 57]

IFAP 1.0

Adopted

March 2014

candidate string have a bidi class that is compatible with a

left-to-right Frogans address.

the candidate string do not comply,

string is rejected.

Otherwise,
compatible with a left-to-right
not the case,

Otherwise, the candidate string

Called by:

- |cd4 verify directionality|

Calls:

none

IFAP lookup tables used:

- LT09 Bidi Class

Input:

- codepoints:

Returns:

true if the candidate string is

Comments:

none

Pseudocode:

OP3FT

FUNCTION c4 verify ltr

{
TABLE table LT09

Frogans Technology

(codepoints)

|

|

|

| VAR index

| VAR cur cp

| VAR bidi class

| FOR index = 1 TO (codepoints.COUNT - 1)
| {

| cur_cp = codepoints.GET (index)
| bidi class = table LT09.LOOKUP
| IF (bidi class == NULL)

| {

| bidi class = 'L'

| }

| IF ((bidi class == 'R') OR

If any of the code points in
then the entire candidate

it checks that the end of the Frogans address is

Frogans address. If this is

then the candidate string is rejected.

is accepted.

a LIST data object containing code points that
represent a candidate string.

accepted, or false otherwise.

(cur cp, #bidi class)

[Page 58]

IFAP 1.0

{
RETURN false

}
BREAK

}
RETURN true

Adopted
| (bidi class == 'AL') OR
| (bidi class == 'AN'"))
| {
| RETURN false
| }
| }
| FOR index = (codepoints.COUNT - 1) DOWNTO 1
| {
| cur_cp = codepoints.GET (index)
| bidi class = table LT09.LOOKUP (cur cp, #bidi class)
| IF (bidi_class == NULL)
| {
| bidi class = 'L'
| }
| IF (bidi_class != 'NSM')
| {
| IF ((bidi class != 'L') AND
| (bidi class != 'EN'"))
|
|
|
|
|
|
|
|

FUNCTION |c4 verify rtl|

OP3FT

Description:

This is a sub-function of the directionality process.

March 2014

It verifies whether the candidate string complies with the
directionality rules concerning right-to-left Frogans address
strings. First it checks that all the code points in the
candidate string have a bidi class that is compatible with a
right-to-left Frogans address. If any of the code points in
the candidate string do not comply, then the entire candidate

string is rejected.

Otherwise, it checks that the end of the Frogans address is

compatible with a right-to-left Frogans address. If
not the case, then the candidate string is rejected.

Otherwise, the candidate string is accepted.

Frogans Technology

this is

[Page 59]

IFAP 1.0 Adopted

Called by:
- |c4 verify directionality|

Calls:
none

IFAP lookup tables used:
- LT09 Bidi Class

Input:

March 2014

- codepoints: a LIST data object containing code points that

represent a candidate string.

Returns:

true if the candidate string is accepted, or false otherwise.

Comments:
none

Pseudocode:

FUNCTION c4 verify rtl (codepoints)
{
TABLE table LTO09
VAR index
VAR cur cp
VAR bidi class
FOR index = 1 TO (codepoints.COUNT - 1)
{

{
RETURN false
}
}

_— N

FOR index = (codepoints.COUNT - 1) DOWNTO 1

{
cur_cp = codepoints.GET (index)
bidi class = table LT09.LOOKUP (cur_cp, #bidi class)
IF (bidi_class == NULL)
{

bidi class = 'L'
OP3FT Frogans Technology

cur_cp = codepoints.GET (index)
bidi class = table LT09.LOOKUP (cur_cp, #bidi class)
IF (bidi class == NULL)
{
bidi class = 'L'
}
IF (bidi class == 'L'")

[Page 60]

IFAP 1.0 Adopted March 2014

}

IF (bidi_class != 'NSM')
{
IF ((bidi class != 'R') AND
(bidi class != 'AL') AND
(bidi class != 'EN') AND
(bidi class != 'AN'"))

}
BREAK

}

|
|
|
|
|
|
|
|
RETURN false |
|
|
|
|
RETURN true |

|

A

C.5. Structure

This section provides assistance in implementing a process that
verifies whether a candidate string complies with the structure rules
applicable to a Frogans address.

The functions provided below do not perform verifications concerning
the asterisk character in the Frogans address Section 4.1, as they do
not present any particular implementation difficulties.

These functions directly verify whether a candidate string complies
with the structure rules applicable to network names. The same
functions can be used to verify both network names and site names.
Four functions are required to implement this process:

FUNCTION |c5 verify structure network name|

Description:
This is the main function for this process.

This function checks whether the structure of the candidate
string representing a network name is valid.

First it checks whether the candidate string contains the
U+002A ASTERISK character. If it does, then the candidate
string is rejected.

Otherwise, it checks whether the first character of the

candidate string is an unauthorized character. If it is, then
the candidate string is rejected.

OP3FT Frogans Technology [Page 61]

IFAP 1.0 Adopted March 2014

Otherwise, it checks whether the candidate string contains any
connector characters, and if so, whether they follow the rules
for connector characters. If the candidate string contains
connector characters that do not follow the rules, then the
candidate string is rejected.

Otherwise the candidate string is accepted.

Called by:
- none

Calls:
- |c5 verify first character|
- |c5 verify connector characters|

IFAP lookup tables used:

- none
Input:
- codepoints: a LIST data object containing code points that
represent a candidate string containing a network name.
Returns:

true if the structure of the candidate string is accepted, or
false otherwise.

Comments:
none

Pseudocode:

FUNCTION c5 verify structure network name (codepoints)
{
VAR index
VAR cur_ cp
FOR index = 0 TO (codepoints.COUNT - 1)
{
cur_cp = codepoints.GET (index)
IF (cur _cp == U+002A)
{
RETURN false

}

if (CALL c5 verify first character (codepoints) == false)

{
RETURN false

_— e~

OP3FT Frogans Technology [Page 62]

IFAP 1.0 Adopted March 2014

if (CALL c5 verify connector characters (codepoints)
== false)

}

| |
| |
| |
| RETURN false |
| |
| RETURN true |
| |

FUNCTION |c5 verify first character|

Description:
This is a sub-function of the structure verification process.

This function checks whether the first character in the
candidate string is a combining characters, a decimal number,
or one of five unauthorized characters. If so, the first
character in the candidate string is rejected. Otherwise the
first character in the candidate string is accepted.

Called by:
- |cb5 verify structure network name|

Calls:
none

IFAP lookup tables used:
- LTO06 Combining Marks
- LT10 Decimal Numbers

Input:
- codepoints: a LIST data object containing code points that
represent a candidate string.
Returns:

true if the first character of the candidate string is
accepted, or false.

Comments:
none

Pseudocode:

14

| FUNCTION c5 verify first character (codepoints)

I { |
| TABLE table LTO06 |
| TABLE table LT10 |

OP3FT Frogans Technology [Page 63]

IFAP 1.0

VAR first cp

Adopted

first cp = codepoints.GET (0)

IF (table LT06

{
RETURN false

IF (table LTI10
RETURN false

IF ((first _cp
(first _cp
(first cp
(first cp
(first cp

RETURN false

}
RETURN true

.CONTAINS
.CONTAINS

== U+0375)
== U+05F3)
U+05F4)
)
)

U+06FD
== U+06FE

(first cp))

(first cp))

OR
OR
OR
OR

)

FUNCTION |c5 verify connector characters|

OP3FT

Description:

March 2014

This is a sub-function of the structure verification process.

This function examines each character in the candidate string

to see if it is a connector character and if so,
complies with the following three conditions:

whether it
it cannot be the

first character nor the last character in the candidate string,
it cannot be followed directly by another connector character,
and it cannot be followed directly by a combining character.

If each connector character in the candidate string does not

meet all three of these conditions,
Otherwise,

is rejected.

Called by:

- |cb5 verify structure network name|

Calls:

- |c5 _is connector character|

IFAP lookup tables used:
- LTO06_ Combining Marks

Frogans Technology

then the candidate string
the candidate string is accepted.

[Page 64]

IFAP 1.0 Adopted March 2014

Input:
- codepoints: a LIST data object containing code points that
represent a candidate string.
Returns:

true if the candidate string is accepted, or false otherwise

Comments:
<1> reject candidate string if connector character is followed by
a combining mark

Pseudocode:

FUNCTION c5 verify connector characters (codepoints)
{
TABLE table LT06
VAR index
VAR cur_ cp
VAR previous_cp
cur_cp = codepoints.GET (0)
IF (CALL c5 is connector character (cur_cp) == true)
{
RETURN false
}

previous cp = cur_cp
cur cp = codepoints.GET (codepoints.COUNT - 1)
IF (CALL c5 is connector character (cur cp) == true)

|
|
|
|
|
|
|
|
|
|
|
|
|
|
{ |
RETURN false |

}

FOR index = 1 TO (codepoints.COUNT - 1)

{ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

cur_cp = codepoints.GET (index)
IF (CALL c5 is connector character (previous_cp)
== true)
{
IF (CALL c5 is connector character (cur_ cp)
== true)
{
RETURN false
}
IF (table LT06.CONTAINS (cur_cp)) <1l>

RETURN false
}
}

previous cp = cur cp

—_— N

OP3FT Frogans Technology [Page 65]

IFAP 1.0 Adopted March 2014

| } |
| RETURN true |
|

FUNCTION |c5 is connector character|

Description:
This is a sub-function of the structure verification process.

This function checks whether a code point is a connector
character.

Called by:
- |c5 verify connector characters|

Calls:
none

IFAP lookup tables used:
none

Input:
- a codepoint: a code point.

Returns:
true if a codepoint is a connector character, or false

otherwise.

Comments:
none

Pseudocode:

IF ((a_codepoint == U+002D) OR
(a_codepoint == U+00B7) OR
(a_codepoint == U+0F0B) OR
(a_codepoint == U+30FB)

RETURN true

}

|

|

|

|

|

) |
|

|

|

RETURN false |
|

1

OP3FT Frogans Technology [Page 66]

IFAP 1.0 Adopted March 2014

C.6.

Reference form

This section provides assistance in implementing a process that
converts a valid Frogans address (hence in NFKC form) to its
reference form, where each character is case folded.

Five functions are required to implement this process:

FUNCTION |c6 _generate reference form|

OP3FT

Description:
This is the main function for this process.

It generates the reference form of a candidate string by
applying the string transformation procedure used in the
process of caseless matching for identifiers defined in the
Unicode Standard.

First it applies NFD normalization to the input string.

Then it performs NFKC case folding on the code points in the
NFD normalized string.

Finally it performs NFC normalization on the case-folded
string.

Called by:
none

Calls:
- |c6_normalize nfd|
- |c6_normalize nfc|

IFAP lookup tables used:
- LT11 NFKC Case Folding

Input:

- codepoints: a LIST data object containing code points that
represent the address for which the reference form is
required

Returns:

the reference form string

Comments:
none

Frogans Technology [Page 67]

IFAP 1.0

Adopted

Pseudocode:

March 2014

FUNCTION c6 generate reference form (codepoints)

{

TABLE table_LTll
LIST work cps
LIST temporary cps
LIST nfkc folded cps
VAR index
VAR cur_cp
work cps = CALL c6 _normalize nfd (codepoints)
FOR index = 0 TO (work cps.COUNT - 1)
{

cur_cp = work cps.GET (index)

IF (table LT11.CONTAINS (cur_cp))

{

nfkc folded cps = table LT11.LOOKUP

(cur_cp, #nfkc folded code point)

temporary cps.APPEND (nfkc folded cps)
}
ELSE
{
temporary cps.APPEND (cur_ cp)
}
}

work cps = CALL c6 normalize nfc (temporary cps)

RETURN work cps

FUNCTION |c6 normalize nfd|

OP3FT

Description:
This is a sub-function of the process for generating the
reference form.

The function applies a two-step procedure to generate an NFED
normalized string from an input string of code points.

The first step in the two-step procedure is performed by
calling the |c6_decompose canonical function| described below.

The second step in the two-step procedure is performed by
calling the |c2 reorder| function described previously.

Frogans Technology

[Page 68]

IFAP 1.0 Adopted March 2014

Called by:
- |c6_generate reference form|

Calls:
- |c6_decompose canonical]

- |c2 reorder|

IFAP lookup tables used:

- none
Input:
- codepoints: a LIST data object containing code points
representing the string to be normalized
Returns:

the NFD normalized string

RETURN work cps

Comments:
none

Pseudocode:
)
| FUNCTION c6 normalize nfd (codepoints)
I |
| LIST work cps |
| work cps = codepoints
| work cps = CALL c6_decompose canonical (work cps)
| work cps = CALL c2 reorder (work cps)
| |
| |

FUNCTION |c6 normalize nfc|

Description:
This is a sub-function of the process for generating the
reference form.

The function applies a three-step procedure to generate an NFC
normalized string from an input string of code points.

The first step in the three-step procedure is performed by
calling the |c6 _decompose canonical function| described below.

The second and third steps in the three-step procedure are

performed by calling the |c2 reorder| and |c2 decompose]
functions described previously.

OP3FT Frogans Technology [Page 69]

IFAP 1.0 Adopted March 2014

Called by:
- |c6_generate reference form|

Calls:
- |c6_decompose canonical]
- |c2 reorder|
- |c2 _compose]

IFAP lookup tables used:

- none
Input:
- codepoints: a LIST data object containing code points
representing the string to be normalized
Returns:

the NFC normalized string

RETURN work cps

Comments:
none

Pseudocode:
e
| FUNCTION c6 normalize nfc (codepoints)
I |
| LIST work cps |
| work cps = codepoints
| work cps = CALL c6_decompose canonical (work cps)
| work cps = CALL c2 reorder (work cps)
| work cps = CALL c2 compose (work cps)
| |
| |

]

FUNCTION |c6_ decompose canonical|

Description:
This is a sub-function of the process for generating the
reference form.

It is part of step 1 in both the two-step procedure for
generating an NFD normalized string from an input string of
code points, and in the three-step procedure for generating an
NFC normalized string from an input string of code points.

This function performs a canonical decomposition on each code
point in the input string.

OP3FT Frogans Technology [Page 70]

IFAP 1.0 Adopted March 2014

Called by:
- |c6_normalize nfd|
- |c6 normalize nfc|

Calls:
- |c6_decompose canonical cp|

IFAP lookup tables used:

- none
Input:
- codepoints: a LIST data object containing code points that
represent the string to be decomposed
Returns:

a string containing the canonical decomposition of each code
point in the input string

Comments:
none

Pseudocode:

FUNCTION c6_decompose canonical (codepoints)
{
LIST work cps
LIST temporary cps
VAR cur_ cp
VAR index
FOR index = 0 TO (codepoints.COUNT - 1)
{
cur_cp = codepoints.GET (index)
temporary cps = CALL c6_decompose canonical cp (cur_cp)
work cps.APPEND (temporary cps)
}
RETURN work cps

—_— - N

FUNCTION |c6 decompose canonical cp]
Description:
This is a sub-function of the process for generating the

reference form.

It is part of step 1 in both the two-step procedure for
generating an NFD normalized string from an input string of

OP3FT Frogans Technology [Page 71]

IFAP 1.0 Adopted March 2014

code points, and in the three-step procedure for generating an
NFC normalized string from an input string of code points.

This function uses a recursive algorithm to decompose a code
point. This requires examining the canonical decomposition of
the input code point in IFAP lookup table

LTO02 Canonical Mapping. If a code point does not exist in the
table, then it is included in the normalized string as it is.

The recursive algorithm in this function is based on the rules
set forth in the Unicode Standard [Unicode] section 3.7
Decomposition, D68 canonical decomposition.

Called by:
- |c6_decompose canonical]
- |c6_decompose compatibility cpl|. The function calls itself
recursively.

Calls:
- |c6_decompose compatibility cpl|. The function calls itself
recursively.

IFAP lookup tables used:
- LT02 Canonical Mapping

Input:
- a_codepoint: the code point to be decomposed

Returns:
a list of code points representing the decomposed form of the
input code point

Comments:
<1> if cur cp exists in the table, the function calls itself

Pseudocode:

r

| FUNCTION c6_ decompose canonical cp (a_codepoint)
[{ |
| TABLE table LTO02 |
| LIST decomposition cps

| LIST work cps |
| VAR cur_ cp |
| VAR index |
| IF (table LT02.CONTAINS (a_codepoint))
| { |
| decomposition cps = table LT02.LOOKUP (a codepoint, |

OP3FT Frogans Technology [Page 72]

IFAP 1.0 Adopted March 2014

#canonical mapping)
FOR index = 0 TO (decomposition cps.COUNT - 1)
{
cur cp = decomposition cps.GET (index)
work cps.APPEND (CALL c6_decompose canonical cp
(cur_cp)) <1>
}
RETURN work cps
}
work cps.APPEND (a codepoint)
RETURN work cps

OP3FT Frogans Technology [Page 73]

